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Perfluoroalkyl acids (PFAA) 

A family of organic fluorochemicals and their derivatives 
 
    Perfluorooctane Sulfonate (PFOS) 

 
 

    Perfluorooctanoic Acid (PFOA) 

• Wide industrial and household applications 
• Coatings for paper, fabrics, fire-fighting foams, insecticides, 
electronic etching baths, and other uses 

• Bioaccumulate, environmentally stable 
• Global distribution and persistence in wildlife and humans (half-life 
estimate 4-9 years) 



Toxicity in Laboratory Animals:  PFOA  

•  Hepatotoxic – hypertrophy, cytoplasmic lipid vacuoles, 
 acidophilic degeneration/ necrosis 

•  Immunotoxic – Suppression, thymus and spleen atrophy 

•  Endocrine – elevated E2, lowered T4, altered lipid 
metabolism 

•  Carcinogenic – in rat liver, pancreas, testes (Leydig cells) 



Developmental Studies: PFOA 
PFOA exposure produces developmental toxicity 
•  Dose-related pre- and postnatal lethality 
•  Dose-related postnatal growth deficits 
•  Developmental delay (delayed eye opening) 
•  Reproductive toxicity (delayed sexual maturation) 
•  Endocrine effects (Thyroid hormone imbalance) 
•  Mammary gland development 

 
Cross-Foster Study:   
•  Does prenatal or postnatal exposure play more of a role in the 

effects of PFOA on the pup? 
•  Is in utero exposure alone sufficient? 
•  Is lactational exposure alone sufficient? 
•  Are both in utero and lactational exposure required? 



    
Cross Foster groups: 

Control:   
–  Control Pups + Control Dams    = Control 

Lactational exposure only: 
–  Control pups nursed to Dams dosed with 3 mg        = 3L 
–  Control pups nursed to Dams dosed with 5 mg   = 5L 

In Utero exposure only:   
–  Pups exposed to 3 mg in utero + Control dam    = 3U 
–  Pups exposed to 5 mg in utero + Control dam    = 5U 

Both In utero and Lactational exposure: 
–  Pups 3 mg/kg in utero + Dam 3 mg/kg      = 3U+L 
–  Pups 5 mg/kg in utero + Dam 5 mg/kg    = 5U+L 



Cross Foster Study Outcomes: 

•  Reduced body weights of offspring at birth and whole 
litters died in utero at 5 mg/kg PFOA  

•  Reduced survival of offspring throughout the first two 
weeks of life : 5 U+L  

•  Reduced pup weight gain and delayed eye opening and 
hair growth : 3 U+L, 5 U+L and 5 U 

•  Liver weight/body weight ratio increased in dams and 
offspring in all groups 

•  Post-weaning body weights remain lower in females to 
PND 85 : 5U, 5U+L 



 Mean Pup Body Weights at Birth

1.25
1.3

1.35
1.4

1.45
1.5

1.55
1.6

1.65

female wt male wt pup wt

Control 3 mg/kg 5 mg/kg

*
**

*

*  p< 0.01
**p< 0.005



0
2
4
6
8

10
12
14

Control 3L 3U 3U+L 5L 5U 5U+L
Exposure group

w
ei

gh
t

** ***

*  p< 0.05
** p< 0.01

Fostered Pup Weight Gain PND1-22 



0.5

0.6

0.7

0.8

0.9

1

1.1

PD1 PD2 PD3 PD4 PD7 PD10 PND
14

PND
17

PD22

Postnatal age

Pe
rc

en
ta

ge
 o

f p
up

s 
re

m
ai

ni
ng Control

3 L

3 U

3 U+L

5 L

5 U

5 U+L

* p < 0.05
** p< 0.0001

**

*

Survival of Fostered Litters 



Percent of Eyes Open 

0

0.2

0.4

0.6

0.8

1

1.2

PND13 PND14  PND15  PND16  PND17  PND18

Postnatal Day (PND)

pe
rc

en
ta

ge

Control 3L 3U 3 U+L

5L 5U 5 U+L

Eye Opening 
 a landmark of development 

* p< .05, ** p< 0.01, *** p<0.005 

Mean Day of Eye Opening

13.5 14 14.5 15 15.5 16 16.5

5U+L

5U

5L

3U+L

3U

3L

Control

Ex
po

su
re

 g
ro

up

Age (postnatal day)

*

**

***

Delayed 



PND 11:  Body Size & Hair Growth 
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Conclusions: 
 

•   In utero exposure is a major contributor to 
the effects of PFOA in the offspring 
•   In utero exposure alone can induce effects 
•    Lactational exposure may also contribute to 
effects on pup weight 



•  PPARs are nuclear receptors that regulate lipid homeostasis, 
inflammation, adipogenesis, reproduction, wound healing 

•  PPAR isoforms have specific expression patterns during 
development in the embryo, placenta, and extra-embryonic 
membranes (amnion, yolk sac) 

•  Chemicals and drugs can activate PPAR pathways 

•  PPARα activation is considered to be a causal factor in PFOA-
induced cancer in the rat 

•  Does PPARα mediate the PFAA-induced developmental toxicity? 

PPARα, PPARβ, PPARγ 



PFAA-induced developmental toxicity & PPARα  
 

In Vivo Studies: 
•  PPARα KO mice: Evaluate whether PFOA, PFNA, and 

PFOS have a PPARα-dependent mode-of-action for 
developmental toxicity 

 
In Vitro Studies: 
•  Transfected cells to examine the potential for PFAA 

compounds to activate PPARα 

Gene expression: QPCR and gene arrays: 
•  Characterize and compare gene expression profiles in 

response to PFOA or PFOS 



Dose-response PFOA study in KO mice: 

WT (129S1/SvlmJ) and PPARα KO mice  
§  Mate overnight (plug+ = GD0) 
§  Dose by gavage GD1-17  
§  PFOA solution prepared daily in water 
§  0, 0.1, 0.3, 0.6, 1, 3, 5, 10, or 20 mg/kg/day 



RESULTS: 
 

PFOA did not affect KO or WT: 
•  Maternal weight gain 
•  # implanted embryos per dam 
•  Total # pups (live + dead) at birth 
•  Male or Female pup birth weights 

In both KO and WT:   
•  PFOA increased early full litter resorption in 

both KO or WT (5 mg/kg/day or higher) 
•  Increased relative liver weight of adults and 

pups (WT pups at all doses; KO pups only 
slightly at 3 mg/kg) 
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RESULTS: 
 

ONLY in WT did PFOA significantly 
•  Decrease pup survival PND1-22 
•  Decrease pup weight gain PND1-22 
•  Developmental delay (delayed eye opening) 
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No significant effect of 
PFOA on postnatal 
survival of PPAR KO 
pups. 

Survival decreased in 
WT pups exposed to 
0.6 or 1 mg PFOA, 
p<0.001. 

WT 
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The mean day of eye opening was delayed in WT by ~1 day (p<0.05). 

Mean Day of Eye Opening 
Wild Type PPAR KO 

Dose n Mean Dose n Mean 
0 9 13.8±0.3 0 8 14.1±0.2 

0.1 8 13.5±0.2 0.1 10 14.2±0.3 

0.3 6 13.5±0.2 0.3 9 13.7±0.1 

0.6 5 14.0±0.2 1 8 14.0±0.2 

1 6 14.6±0.3* 3 14 14.3±0.2 



Serum levels and developmental toxicity of PFOA 
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PFOA effects on postnatal pup survival: 
WT pups die but KO pups live  

•  Is a potential difference in WT and KO genetic background 
a factor in survival of the KO pups? 

•  Are maternal factors involved? 
–  effect of PFOA on WT dams contributing to pup 

mortality? 
•  Test these possibilities by exposing Heterozygous pups in 

WT and KO dams 
–  WT female x KO male= all HET pups 
–  KO female x WT male=all HET pups 
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Effects of PFOA on postnatal survival depend on expression of PPARα in the 
pup.  Expression of even one copy of the PPARα gene results in decreased 
survival. 



Dose-response PFNA study in KO mice: 

WT (129S1/SvlmJ) and PPARα KO mice  
§  Mate overnight (plug+ = GD0) 
§  Dose by gavage GD1-17  
§  PFNA solution prepared daily in water 
§  0, 0.83, 1.1, 1.5, or 2.0 mg/kg/day 



RESULTS: 
 

PFNA did not affect KO or WT: 
•  Maternal weight gain 
•  # implanted embryos per dam 
•  Male or Female pup birth weights 

 
WT only:   
•  PFNA decreased # live per litter at 1.1 and 2.0 mg/kg 
•  FLR increased at 2.0 mg/kg 
 
WT and KO: 
•  Relative liver weight increased in WT adult and pups (all doses) 
•  KO pups only slightly at 2 mg/kg 



No significant effect of 
PFNA on postnatal 
survival of PPAR KO 
pups. 

Survival decreased in 
WT pups exposed to 
1.1 or 2 mg PFNA 

Postnatal Pup Survival
Wild-type

0 5 10 15 20
0

25

50

75

100
WT Control
WT 0.83 mg/kg
WT 1.1 mg/kg
WT 1.5 mg/kg
WT 2.0 mg/kg

PND

%

Postnatal Pup Survival
PPAR-KO

0 5 10 15 20 25
0

20

40

60

80

100
KO Control
KO 0.83 mg/kg
KO 1.1 mg/kg
KO 1.5 mg/kg
KO 2.0 mg/kg

PND

%



Serum levels and developmental toxicity of PFNA 
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§  WT and PPARα KO mice  
Mate overnight (plug+ = GD0) 
§  Dose by gavage GD15-18  
§  PFOS solution prepared daily in  

 0.5% Tween-20 
§  WT :  0, 4.5, 6.5, 8.5, or 10.5 mg/kg/day 
§  KO :  0,  8.5, or 10.5 mg/kg/day 

§  Evaluate pup survival, weight gain, eye opening 
from PND1-15 

Dose-response PFOS study in KO mice: 



RESULTS: 
In both WT and PPAR KO 
PFOS did not affect: 

•  Maternal weight gain 
•  # implanted embryos per dam 
•  % litter loss from implantation to birth 
•  Total # pups (live + dead) at birth 
•  Male or Female pup birth weights 
•  Pup body weight or weight gain PND1-15 
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Serum levels and developmental toxicity of PFOS 
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PFOS Developmental Toxicity: 

PPARα independent mode of action 
–  WT and KO neonates die 

PFOS does not depend on expression of PPARα to produce neonatal 
lethality, some other mode of action occurs 

 
PFOS studies in rat (Grasty et al 2005) suggest effects on lung 

maturation or function 
–  Newborn rats appeared to have difficulty breathing 
–  Lungs appeared small or underinflated 
–  Histologically the lungs appeared immature 
–  Initial impressions were of effects on lung maturation 

 



•    Test potential for other PFAAs to activate PPARα 
–  In Vitro Assay using transiently transfected Cos-1 cells 
–  Plasmid containing the mouse or human PPARα ligand binding 

domain (LBD) 
–  Activation evaluated with a Luciferase reporter 

•  Compare:  
–  PFAAs of various carbon chain lengths 
–  Perfluorocarboxylates vs Sulfonates 
–  Activity of PFAAs on mouse vs human PPARα 
–  Evaluate mixture behaviors (additivity?) 

Mouse and Human PPAR plasmids provided by Jeff Peters and Jack Vanden 
Heuvel, Penn State University, PA 

 

PPARα Mode-of-Action for other PFAAs? 





Test compounds:          Carbon  
        chain length 

Perfluorobutanoic acid (PFBA)     4 
Perfluoropentanoic acid (PFPeA)    5 
Perfluorohexanoic acid (PFHxA)    6 
Perfluoroheptanoic acid (PFHpA)    7 
Perfluorooctanoic acid (PFOA)     8 
Perfluorononanoic acid (PFNA)     9 
Perfluorodecanoic acid (PFDA)    10 
Perfluoroundecanoic acid (PFuNA)   11 
Perfluorododecanoic Acid (PFDoA)   12 
 
Perfluorobutane sulfonate (PFBS)    4 
Perfluorohexane sulfonate (PFHxS)    6 
Perfluorooctane sulfonate (PFOS)    8 
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Mouse and human responses were compared by regression analysis. 
      mouse plasmid,           human plasmid. 
P values shown on plots are the level of significance of difference 
between the slopes of the regression lines for mouse vs. human.  
NS, not significant. 

C5 C7 

C11 C12 

P<0.05 P<0.01 

P<0.0001 P<0.0001 



PFAA Activities on PPARα in Transfected COS-1 Cells 

  C20max (µM) 

Compound Mouse Human 

PFBA (C4) 51 75 

PFPeA (C5) 45 52 

PFHxA (C6) 38 47 

PFHpA (C7) 11 15 

PFOA (C8) 6-7 7-16 

PFNA (C9) 5 11 

PFDA (C10) 20 no activity 

PFUnDA (C11)  8 86 

PFDoDA (C12) 33 no activity 

PFBS (C4) 317 206 

PFHxS (C6) 76 81 

PFOS (C8) 94 262 

Abbott, Wolf, et al 



Summary of In Vitro PPARα Assay 

•  In vitro assay shows that many of the PFAAs have the 
potential to act via a PPARα mode-of-action 

•  Perfluorocarboxylates are more active than sulfonates 

•  Activity increases with increasing chain length 

•  Mouse PPARα is more responsive than human 



PFAA Mixtures 

•  Activation of mouse PPARα in transfected COS-1 cells 
•  Binary combinations of PFOA and PFHxA, PFNA, PFHxS or 

PFOS in µM range were evaluated 
•  Interactions between PFOA and the 4 PFAAs examined were 

largely additive 
•  Results are comparable with those using a fixed-ratio mixture of 

4 PFAAs (PFOS, PFOA, PFHxS and PFNA) based on NHANES 
data 







Gene Expression in Fetal Tissues  
(Gene Array) 

§  Timed-pregnant CD-1 mice  
§  0, 1, 3, 5, 10 mg/kg PFOA  
§  0, 5, 10 mg/kg PFOS 
§  Dosed from GD 1-17 by oral gavage 
§  GD17 fetal liver and lung total RNA prepared 
§  Five biological replicates per group (pool litter) 
§  Gene profiling using Affymetrix 430_2 microarrays 



Effect of PFOA and PFOS on PPARα marker 
genes in the mouse fetus 

PFOS PFOA 

M.B. Rosen et al.  Reproductive Toxicology 27 (2009) 278–288 



Gene signatures altered by PFOA in the fetal mouse liver  

§   Lipid metabolism and transport  +++  +++ 
§   Peroxisome biogenesis  +++  +++ 
§   Xenobiotic metabolism   ++    + 
§   Acute phase response   ++ 
§   Proteasome activation   ++ 
§   Cholesterol biosynthesis   ++ 
§   Phospholipid metabolism   ++    + 
§   Bile Acid Biosynthesis   ++    + 
§   Glucose metabolism   ++    + 

PFOA    PFOS 



Gene expression in pre- and post-natal 
liver & heart (qPCR) 

  
CD-1 Mice Dose GD1-17 PFOA 5 mg/kg/day 

 
Collect fetal & postnatal tissues GD14, GD17, 
PND1, 14, 21, 28, (42 & 63 for liver) 
 



Mouse Liver & Heart: PFOA induction of genes 
Liver:  GD14, GD17, PND1, 14, 21, 28, 42, & 63 
Heart: GD14, GD17, PND1, 14, 21, 28  

 
PPARα regulated 
•  Acox1  peroxisomal   Fatty Acid β-oxidation 
•  Ehhadh  peroxisomal   Fatty Acid β-oxidation 
•  Pdk4  mitochondrial   Glucose metabolism 
•  Cyp4a14  microsomal   Fatty Acid oxidation 
•  Me1  cytosolic   Fatty Acid biosynthesis 
•  Acaa1  peroxisomal   Fatty Acid metabolism 
 
CAR and PPARα regulated 
•  Cyp2b10  microsomal   Arachadonic Acid and 

      xenobiotic metabolism 
PXR regulated (liver) 
•  Cyp3a11  microsomal   lineoleic acid metabolism 
 
PPARγ (heart) 
•  Pgc1a  PPARγ signaling  Fatty Acid oxidation  
•  Cpt1b  PPAR signaling  Fatty Acid metabolism  



Animal models revealed  
 species differences 
 pharmacokinetic influences 
 confirmed a role for PPAR 

In vitro model of receptor activation 
 comparing larger numbers of PFAAs  
 comparing relative activity of PFAAs 
 evaluating binary and complex mixture behaviors 

Overall the animal and in vitro models promoted  
 understanding the basis for a developmental response  
 evaluation of risk to human health 

Final	Slide!		Take	home	message—	

Teratology	Society	59th	Annual	Mee3ng	
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